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In this paper, a modern exact method is proposed for solving the problem of free
vibrations of a Timoshenko-type viscoelastic beam with discrete rigid bodies, connected to
the beam by means of viscoelastic constraints. The phenomenon of free vibrations of this
discrete}continuous system is described by a set of three partial and two subsystem ordinary
di!erential equations with generalized boundary conditions and initial conditions. Vector
notation of the equations allows one to identify the self-adjoint linear operators of inertia,
sti!ness and damping. In this case, these operators are not homothetic hence a separation of
variables in this set of equations is possible only in a complex Hilbert space. Such separation
of variables leads to ordinary di!erential equations of motion with respect to time as well as
to a set of three ordinary di!erential equations with respect to a spatial variable and two
subsystem algebraical equations. Solution of the boundary-value problem was carried out in
the classical way, but its results are complex conjugated. Using these results and the
fundamental principle, describing the orthogonality property of complex eigenvectors, the
problem of free vibrations of the system with arbitrary initial conditions has been "nally
solved exactly.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In conventional terminology mechanical systems are divided into discrete and
continuous types. However, in practice combined systems, i.e., discrete}continuous, are
also met. Such systems are much more complicated in mathematical description and
dynamic response analysis than the isolated discrete or continuous system. Because of
these complications, approximating methods of dynamic analysis of discrete}continuous
systems are mostly used. The essence of approximation for the well-known "nite element
(FEM) analysis is discretization of the continuous subsystem which belongs to combined
system. Another approximation method consists of expansion of particular solutions as
series. Exact methods solving dynamic problems are well known but only for conservative
examples and for some speci"c cases of non-conservative systems.

Bibliography describing classical approximation methods is very extensive and
illustrative examples are included in references [1}7]. Despite the containing popularity of
classical approximation methods, their inconvenience sometimes discouraged investigators
from applying and evolving these methods. In the cases in which classical approximation
methods are not satisfactory, one should apply the more exact methods wherever possible
2-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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as shown by the continuous search for more accurate methods of vibrations analysis of
compound systems (see, e.g., references [6}9]).

The aim of this paper is to introduce an exact method of solving the problem of free
vibrations of viscoelastic Timoshenko beams in which concentrated rigid bodies are
connected to the beam by means of viscoelastic constraints described by the Voigt}Kelvin
model. Moreover at the beam ends, generalized boundary conditions are assumed. In order
to realize the intended purpose of this paper, the fundamental principles given in reference
[8] have been used.

2. FORMULATION OF THE PROBLEM

2.1. PHYSICAL MODEL

The investigations in this paper have been carried out on the physical model of the
mechanical system shown in Figure 1. The continuous subsystem in this physical model
is a viscoelastic Timoshenko beam with optional attachments at its ends. The rheological
properties of the material of the beam are described by a Voigt}Kelvin model. The
existing constraints at the ends of beam show, in general, all the practical attachment
cases. The properties of the assumed model depend on the sti!ness of the spiral springs
and type of joints used for mounting them to the beam. The discrete subsystem consists
of a set of translational and rotational oscillators. Each oscillator is a discrete rigid
body with both translational and rotational inertia as well as viscoelastic constraints
described by Voigt}Kelvin model. Mutual exclusion of any interaction between
translatory and rotatory motion of the oscillator implies that each discrete rigid body
can be presented as two independent rigid bodies, i.e., a particle and a thin disc (see
Figure 1).
Figure 1. Physical model of Timoshenko}Kelvin beam with oscillators.
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2.2. MATHEMATICAL MODEL

Vibrations of the mechanical system, presented in Figure 1 are described by the set of
coupled di!erential equations:
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where D"k�GA and R"EI are the shearing and #exural rigidities of the beam,
respectively, �"	A and �*"	I are the mass and the mass moment of inertia of the beam
per unit length, respectively, k� is the shearing factor, and 
 ( ) ) denotes the Dirac delta
function. z"z(x, t) and �"�(x, t) denote auxiliary dummy functions which are "ltered by
the Dirac delta functions at the points x
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and simultaneously suppressed outside these
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In order to express the boundary conditions (2) in explicit form, the equations of
constraints at the beam ends can be applied as
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are the coe$cients describing the types of beam attachments at its ends
and k"�
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��
being a Kronecker delta. These coe$cients are determined from

consistency conditions of generalized internal forces and displacements of the beam and
constraints at its ends. After di!erentiation of the right-hand side of equation (4) and
replacing x by a"0, l successively, this formula becomes the fully explicit form.

It will be convenient for further investigations to rewrite equations (1) in the vector
form [8]
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are the linear operators of inertia, sti!ness and damping respectively. It is obvious that
the above operators are self-adjoint because of their symmetry [8] but they are not
homothetic.

Let one assume that operators K and L can be homothetic only in the case when the
equalities �"�, c

�
"�k

�
and c*

�
"�k*

�
are satis"ed, this implying, that L"�K, where � is

a homothety factor and is not equal to zero.
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3. BOUNDARY-VALUE PROBLEM

3.1. SEPARATION OF VARIABLES

In case of free vibrations, i.e., when F,0, equation (5) reduces to the form
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The classical Fourier method of separation of the variables in equation (6) can be applied
in cases when L,0, i.e., for the undamped system or, if the operators K and L are
homothetic when the vectors appearing in equation (6) are co-linear. In general, these
vectors are co-planar and separation of the variables in equation (6) can be achieved only
when the problem is extended to the complex Hilbert space. Such an extension makes it
possible to separate the variables as in the classical case so that

u"U¹, (7)

where U"[=, �, �, Z, �]� is the vector of the complex modes of vibrations, ¹"¹(t)
denotes a scalar function of motion, ="=(x), �"�(x), �"�(x), Z"Z(x) and
�"�(x), but remembering that Z and � play the role of auxiliary dummy functions.

Substituting equation (7) into equation (6) one obtains the ordinary di!erential equation
of motion [8]
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and the vector equation of mechanical impedance [8]
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where �"ih#� stands for the complex frequency of vibration. Here � and h are
responsible for the oscillations and damping of motion respectively.

Equation (9) can be written in a scalar form expressed by a set of three ordinary
di!erential and two subsystems of linear algebraic equations as
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which, by analogy with equation (4), produces
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3.2. SOLUTION OF THE SET OF EQUATIONS

For solving equations (10), the classical procedure which is presented in, e.g., references
[4, 5] has been applied. Hence, the general solutions of equations (10a}c), with the help of
equations (10d, e) have the form
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Equations (19) imply an existence of the motionless nodes O
�
and O*

�
at the translational

and rotational components of the &&complex constraints'' of the jth oscillator, as shown in
Figures 2(a) and 2(b) respectively.
Figure 2. Scheme of formation of the motionless nodes O
�

and O*
�

on the jth constraint:
(a) translational constraint, (b) rotational constraint.
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These motionless nodes split this mechanical system but yet do not exclude a dynamic
interaction between the discrete rigid bodies and the continuous subsystem. Con"rmation
of the motionless nodes' existence can also be found in reference [10].

3.3. SOLUTION OF THE BOUNDARY-VALUE PROBLEM

By applying solution (13) to formula (12), then substituting the results into boundary
conditions (11), the system of homogeneous linear algebraic equations can be constituted,
which in a matrix notation takes the symbolic form

AX"0, (20)

where A is a coe$cient matrix with respect to �, and X is the vector of unknowns of the
equations system.

The system of equations has a non-trivial solution, providing that the matrix A is
singular, i.e., the determinant of this matrix must vanish. Hence, the transcendental,
complex frequency equation can be written in the symbolic form as
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4. FREE VIBRATIONS

The general solution of equation (6) with homogeneous boundary conditions (2)
and initial conditions (3) is a linear combination of linearly independent particular
solutions,
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Replacing ¹
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in equation (23) by the general solution of the di!erential equation (8), i.e.,
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Now by using the results obtained for eigenfrequencies �
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Alternatively, by transposing the complex components appearing on the right-hand side of
equation (28) into trigonometrical form and because of the existence of complex conjugated
components, solution (28) takes a more classical explicit form
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�
w

�

�

z
�

�
�
�" 


�
���

�C
�
�e	�� ��Re�

=
�

�
�

�
�

Z
��

�
��
� cos(��

t#�
�
)#Im�

=
�

�
�

�
�

Z
��

�
��
� sin(�

�
t#�

�
)� . (30)

5. EXAMPLE

In order to test the method described, the mechanical system as shown in Figure 3 is
assumed. The continuous subsystem of this combined system is an viscoelastic Timoshenko
beam simply supported at the end A and "xed to the weightless #exional spring at the end B.
The second end of the #exional spring is clamped onto the rigid wall at the point D. The
#exural rigidity and length of the #exional spring are denoted by R

�
and l

�
respectively. The

discrete subsystem is composed of translational and rotational oscillators, which are
connected to the beam at the point C by viscoelastic constraints. In Table 1, the coe$cients
of the constraints of the beam ends are shown (Figure 2).

In the example presented functions (13) take the particular forms

="A
�
sin 

�
x#A

�
sin 

�
x#[�

��
=

�
g
��

#�*
��

�
�
g
��

]H(x!x
�
),

�"a
�
A

�
cos 

�
x#a

�
A

�
cos 

�
x#[�

��
=

�
g
��

#�*
��

�
�
g
��

]H(x!x
�
),

�"(
�
!a

�
)A

�
cos 

�
x#(

�
!a

�
)A

�
cos 

�
x

#�
d

dx
[�

��
=

�
g
��

#�*
��

�
�
g
��

]![�
��
=

�
g
��

#�*
��

�
�
g
��

]�H(x!x
�
). (31)



Figure 3. Exemplary Timoshenko}Kelvin beam with oscillator.

TABLE 1

Constraint coe.cients for the beam ends of the model illustrated in Figure 2

P S"1 S"2

����
��

1 1 0
2 0 0

����
��

1 0 0
2 0 1

��
�
��

1 1 0
2 !(1#i��)Dl

�
/3R

�
(1#i��)Dl�

�
/2R

���
�
��

1 (1#i��)Dl
�
/3R

�
1!(1#i��)Dl�

�
/2R

�
2 (1#i��)Rl�

�
/2R

�
(1#i��)Rl

�
/R

�
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From formulas (30),

=
�
"A

�
sin 

�
x
�
#A

�
sin 

�
x
�
, �

�
"a

�
A

�
cos 

�
x
�
#a

�
A

�
cos 

�
x
�
.

Moreover, the Green functions are the same as previously shown in equation (15), for j"1.
Further considerations in this example have been carried out according to the algorithm
presented, but for j"1.

6. NUMERICAL RESULTS

For numerical calculations, the data chosen for the physical quantities of the mechanical
system shown in Figure 2 are: R"8�10�Nm�, �"16 kg/m, m"30 kg, m*"4 kgm�,
k"2)5�10�N/m, k*"1�10�Nm, c"5�10�Ns/m, c*"1�10�Nsm, l"1)5m,
x
�
"0)75m, �"0)0005 s, l

�
"0)5m, R

�
"5�10�Nm�.

Figure 4 illustrates graphically the results obtained for certain complex eigenmodes of the
mechanical system depicted in Figure 2. The "rst consideration is that of the phenomenon
of splitting complex eigenmodes into subeigenmode pairs, i.e., their real and imaginary parts.



Figure 4. Complex eigenmodes =
�
, �

�
and Z

�
, �

�
of the beam and oscillator respectively, of exemplary

mechanical system shown in Figure 3. (a) Re Z
��

"!0)0205915. ImZ
��

"0)000466203; (b) Re�
��

"!0)0254296,
Im�

��
"!0)00801219; (c) ReZ

��
"0)000642617, ImZ

��
"!0)00228196; (d) Re�

��
"0)0112695, Im�

��
"

0)0311483.
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From observation of the graphs shown in Figures 4(a}d) it is noticable that the real parts
of each complex eigenmode are of classical regular oscillatory shapes, whilst the imaginary
parts are non-regular and monotonically increase or decrease the shapes. In particular, the
rotational node occurring in the imaginary part of the complex eigenmodes �

�
(Figure 4(d)),

implies that the considerable external concentrated moment produced by the inertia of the
rotary oscillator acts at this point. Examples of the relationship between some



Figure 5. Graphical illustration of the "rst and second complex eigenfrequencies of the Timoshenko}Kelvin
beam with oscillator shown in Figure 3: (a) �

�
"18i$650, �"18; (b) �

�
"0)0004i$3000, �"0)0004.

Figure 6. Graphical determination of four complex eigenfrequencies of the Bernoulli}Euler beam with
oscillator shown in Figure A1: (a) �

�
"3)3857i$69)9, �"3)3857; (b) �

�
"1)7576i$354)9, �"1)7576;

(c) �

"7)2233i$2205)7, �"7)2233; (d) �

�
"0)0050i$6169)7, �"0)005.
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subeigenmodes of the beam and subeigenmodes of the oscillator corresponding to them can
be seen in Figure 4. Singularities at the point of location of the oscillator appear only
with the derivatives of the higher-ranked subeigenmodes. Figure 5 shows the "rst and
second complex eigenvalues when the coe$cients of the magnitude of matrix A determinant
is zero.

A comparison of the present results with those of reference [6] is shown in Appendix A.
By de"ning the magnitude of the determinant A, in Appendix A, as the transcedental

function ���, complex eigenvalue roots of equation (A13) (see Figure 6) occur when ��� is
zero. The comparison of the complex eigenvalues obtained in Appendix A with the complex
characteristic values reported in the "rst column of Table 1 of reference [6] indicates clearly
that both results are identical.



682 J. CABAND SKI
Although it would appear that matrix A occurring in Appendix A is analytically
ill-conditioned due to the singularity of the factor �, nevertheless, the result at the
neighbourhood of the singularity point (the peak in Figure 6) has been found quite precisely.

7. CONCLUSIONS

1. The generalized method presented in this paper can be applied to the free vibration
analysis of a discrete}continuous system with internal damping for an arbitrary choice of
parameters: �, �, c

�
, c*

�
, k

�
and k*

�
, and requires that self-adjoint operators K and L must not

be homothetic.
2. The "nal results presented in the forms of equations (28)} (30) can be applied in

practical calculations. The form of equation (28) indicates the utilitarian signi"cance,
whereas the forms of equations (29) and (30) the cognitive importance.

3. The form of equation (29) con"rms unambiguously the correctness of this method.
Moreover, the form of equation (30) indicates that the phenomenon of free vibrations is of
binary character, this meaning dual interference exists. One can formulate a hypothesis that
the apparent inertia, i.e., real inertia and viscosity are the reason for this dual phenomenon.
This supposition is also con"rmed by the analogy of kinetic and dissipative energy.

4. The operational principle describing the generalized property of complex eigenvector
orthogonality (22) and operational formula (25) are invariants of this method. The results
from the separation of variables (equations (8) and (9)), as well as the presence of invariants
can be used for solving the free vibrations problem for any linear non-conservative system.

5. In particular cases, when operators K and L are homothetic, phase angles Arg=
�
,

Arg�
�
, Arg�

�
, ArgZ

��
and Arg�

��
are invariable which implies that equation (29)

can be reduced to the well-known form which can be obtained by the classical Fourier
method.

6. Oscillators connected to the continuous subsystem often play the role of dynamic
dampers or exciters of a chosen component of the subsystem vibrations. Parameters of these
dampers or exciters can be easily determined by using formulas (19) and (14).

7. Solution of the steady forced-vibration problem needs

(a) completion of the right-hand side of equations (10) by providing amplitudes of forced
loads:

(b) replacement of the complex frequency � by the real frequencies of forced loads �:
(c) the assumption that the forced frequencies of loads are the same and invariable in

time.

The problem of vibration forced by arbitrary loads can be solved using the principles
given by reference [8].
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APPENDIX A: THE COMPARATIVE EXAMPLE

In the order to verify the method presented in this work, the study is compared with the
results obtained in the example of reference [6]. The continuous}discrete system shown in
Figure A1 is assumed. The continuous subsystem of this combined system is a clamped}free
Bernoulli}Euler beam. Moreover, the discrete subsystem is a translational oscillator, i.e.,
a discrete rigid body (particle), which is connected to the beam by means of a viscoelastic
constraint described by the Voigt}Kelvin model.

The governing equations of the oscillating motion of the system shown in Figure A1, are

EJ
��w
�x�

#�
��w
�t�

#�k#c
�
�t� (w!z) � (x!x

�
)"0,

[m d�z/dt�!(k#c d/dt) (w
�
!z)]� (x!x

�
)"0, (A1)

which together with the assigned boundary conditions

w(0, t)"0, �w/�x �
��

"0, EJ ��w/�x� �
�


"0, EJ �w/�x �
�


"0 (A2)

represent the boundary-value problem.
By comparison of equations (A1) with the vector equation (6), one can identify the vector

of displacements as

u"�
w

z� (A3)
Figure A1. Clamped}free Bernoulli}Euler beam with oscillator.
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and operators of inertia M, damping L and sti!ness K, respectively, as

M"�
� 0

0 m�(x!x
�
)�, L"c�

�(x!x
�
) !� (x!x

�
)

!�(x!x
�
) � (x!x

�
)�,

K"k�
[(R/k)��/�x�#�(x!x

�
)] !� (x!x

�
)

!� (x!x
�
) � (x!x

�
)�. (A4)

The above note implies that these operators are self-adjoint, but they are not homothetic.
After separation of the variables in equations (A1), according to the procedure used in

equations (6}9), the set of one ordinary di!erential equation and a linear algebraic one can
be written as

d�=/dx�!�=#�=
�
� (x!x

�
)"0, Z"!�=

�
� (A5)

where

" ��
���
EJ

, �"

��m(k#i�c)
[��m!(k#i�c)]EJ

, �"

k#i�c
��m!(k#i�c)

. (A6)

In conformity with separation of the variables, the boundary conditions (A2) can be written
down in the form

=(o)"0, d=/dx �
��

"0, d�=/dx� �
�


"0, d=/dx�
�


"0. (A7)

The general solution of the di!erential equation in equation (A5) has the form

="A sinh x#A* sin x#B coshx#B* cos x

!(�=
�
/2) [sinh(x!x

�
)!sin (x!x

�
)]H(x!x

�
). (A8)

Substituting function (A8) and its "rst distributional derivative into two "rst (upper)
boundary conditions (A7), respectively, one concludes that A*"!A and B*"!B, from
whence equation (A8) reduces to the form

="A(sinh x!sin x)#B(cosh x!cos x)

!(=
�
�/2)[sinh(x!x

�
)!sin (x!x

�
)]H(x!x

�
). (A9)

From equation (A9)

=
�
"A(sinh x

�
!sin x

�
)#B(coshx

�
!cos x

�
). (A10)

Owing to the second and third distributional derivatives of the piecewise regular function
(A9), two other (lower) boundary conditions (A7) together with associated equation (A10)
constitute the system of homogeneous linear algebraic equations,

AX"0, (A11)
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where

X"[A, B,=
�
]�,

A"�
(sinh l#sin l) (cosh l#cos l) !(�/2)[sinh (l!x

�
)#sin (l!x

�
)]

(cosh l#cos l) (sinh l!sin l ) !(�/2)[cosh(l!x
�
)#cos (l!x

�
)]

(sinh x
�
!sin x

�
) (coshx

�
!cos x

�
) !1 �.

(A12)

For the existence of non-trival solutions of equation (A11), the determinant of the coe$cient
matrix A with respect to v must vanish, which leads to the exact characteristic equation:

det A"0. (A13)

The data for the example calculated here were EJ"6�10�Nm�, �"12 kg/m, l"1)5m,
x
�
"0)75 m, together with the parameters used examples from reference [6], i.e., m/�l"1,

kl/EJ"0)5, (c/2m)�m/k"0)05, from which it follows directly that m"�l, k"0)5EJ/l,

c"0)1�mk. The relationship between the complex eigenfrequencies �
�

and the
non-dimensional complex characteristic values *

�
here presented in reference [6] is

*
�
"�*�

�
(n"1, 2,2 ,R),

where �*"i��l�/EJ is the conversion factor.

APPENDIX B: NOMENCLATURE

l beam length
t time
x Cartesian co-ordinate system axis
x
�

co-ordinate of location of jth oscillator
	 mass density of the beam material
E, G Young's and Kircho!'s modulus of the beam material respectively
�, � longitudinal and tangential retardation times of the beam material respectively
k� shearing factor
m

�
mass of the jth oscillator corresponding to the particle

m*
�

mass moment of inertia of disc of jth oscillator with respect to its axis of rotation
k
�
, k*

�
sti!ness coe$cients of translational and rotational constraints of the jth oscillator
respectively

c
�
, c*

�
damping coe$cients of translational and rotational constraints of the jth oscillator
respectively

K
�
, K

�
general sti!ness coe$cients of the beam constraints at its ends respectively

w de#ection of the beam, w"w(x, t)
� angle of rotation of the beam cross-section, �"�(x, t)
� angle of shearing of the beam cross-section, �"�(x, t)
z
�

displacement of the particle of the jth oscillator, z
�
"z

�
(t)

�
�

angle of rotation of the disc of the jth oscillator, �
�
"�(t)

A cross-section area of the beam
I axial moment of inertia of the beam cross-section
q distributed force acting on the beam, q"q(x, t)
m distributed moment acting on the beam, m"m(x, t)
Q

�
concentrated force acting on the jth oscillator, Q

�
"Q

�
(t)

M
�

concentrated moment acting on the jth oscillator, M
�
"M

�
(t)
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